Hydroxyapatite-Based Materials: Synthesis and Characterization
نویسنده
چکیده
The use of foreign materials to be used as implants within or outside the human body is not new. There are reports of more than 2000 years old which indicate the replacement of bone material in order to repair seriously damaged tissues. In the mid-nineteenth century it was attempted to repair human body parts using the materials available according to the technological advance of the time, unfortunately, these materials were mainly based on copper or bronze, suffering severe corrosion within the human organism's environment, and causing infections that also endangered the lives of patients. For this reason the prostheses used were basically external. Over the years (the late nineteenth and early twentieth century) were made several attempts to use different materials such as gold, glass and new alloys with better results. Advances in polymer chemistry and the development of new alloys in modern metallurgy during the second half of the twentieth century gave rise to a variety of materials for reconstruction and replacement of some tissues inside and outside the human body. In the case of ceramic materials, the development of modern technologies has led to new materials with chemical, physical and mechanical properties that make them an excellent choice for applications in dental and orthopedic implants. There are many ways to define a biomaterial, which has not been easy given the breadth of the term. In the European Society for Biomaterials Consensus Conference in 1986, was given the following definition: “Biomaterial is a material or substance, whether used alone or in making a medical device designed to interact with human tissues to monitor body functions or to treat pathological conditions of the same” (Mattox, 1992; Ravaglioli & Krajewski, 1992). A synonym for this is "biomedical material". All definitions include the word "material", which usually indicates a solid consistency substance used to manufacture an object, which may consist of living or nonliving materials. If the material is alive, then is called "graft" and those non-living, placed inside the body, are called "implants". With a more limited meaning, the so-called "prostheses" can be considered as "endoprostheses", if they are contained entirely within the body, or "exo-prosthesis"(or "external prosthesis") if they are completely out. In other hand, the "biocompatibility" of a biomaterial is defined as their ability to successfully fulfill a specific application, with an appropriate response of the host. That is, the biocompatibility means more than the fact that a material is not harmful in the body; it
منابع مشابه
Synthesis and Characterization of Hydroxyapatite Nanocrystals via Chemical Precipitation Technique
In this study, hydroxyapatite (HA) nanocrystals have been synthesized via chemical precipitation technique. Diammonium hydrogen phosphate and calcium nitrate 4-hydrate were used as starting materials and sodium hydroxide solution was used as the agent for pH adjustment. The powder sample was evaluated by techniques such as scanning electron microscope, transmission electron microscope, Fou...
متن کاملSynthesis and Characterization of Nano-Hydroxyapatite/mPEG-b-PCL Composite Coating on Nitinol Alloy
In this study the bioactivity of hydroxyapatite/poly(ε-caprolactone)–poly(ethylene glycol) bilayer coatings on Nitinol superelastic alloy was investigated. The surface of Nitinol alloy was activated by a thermo-chemical treatment and hydroxyapatite coating was electrodeposited on the alloy, followed by applying the polymer coating. The surface morphology of coatings was studied using FE-SEM and...
متن کاملSilicon-substituted hydroxyapatite nanocomposite: Synthesis, characterization and in vitro bioactivity study in Human Serum Albumin
Nano hydroxyapatite and Silicon-substituted hydroxyapatite nanocomposites with various amount of Si contents (0, 2, 4 and 6 mole % as named as HS0, HS2, HS4 and HS6) were prepared via in situ hybridization method and were analyzed by XRD, FTIR, SEM and AFM techniques. Size distribution of the products demonstrated that hydroxyapatite particles size was between 2 and 53.5 nm with further mean si...
متن کاملSynthesis, characterization and biocompatibility evaluation of hydroxyapatite - gelatin polyLactic acid ternary nanocomposite
Objective(s): The current study reports the production and biocompatibility evaluation of a ternary nanocomposite consisting of HA, PLA, and gelatin for biomedical application.Materials and Methods: Hydroxyapatite nanopowder (HA: Ca10(PO4)6(OH)2) was produced by burning the bovine cortical bone within the temperature range of 350-450 oC followed by heating in an oven at 800. Synthesis of the te...
متن کاملHydroxyapatite - starch nano biocomposites synthesis and characterization
Bone like hydroxyapatite (nHAp) was synthesized via an in situ biomimetic process in presence of wheat starch. The effect of polymer concentration alteration on the final structure of nHAp was investigated. Formation of the nHAp at room temperature was confirmed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Size and morphology of the nHAp samples were character...
متن کاملSynthesis and characterization of nHA-PLA composite coating on stainless steel by dip-coating process for biomedical applications
316L stainless steel is the most commonly used metallic material in the manufacture of orthopedic implants. To achive better properties metal implants often coated with biocomposites. A sol–gel method was used for coating of Poly lactic acid (PLA)/Hydroxyapatite nanopowder (nHA) on stainless steel 316L substrate. The X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) wer...
متن کامل